

Compiler

(definition and
error handling)

Interpreter

(definition and
error handling)

Assembler

(definition and
error handling)

Compiler

(Benefit and Drawback)

Interpreter

(Benefit and Drawback)

Why use high-level

programming languages?

 Converts a high level program into machine

code for execution at a later time (as an

executable file).

 The entire program is converted (not one

line at a time like an interpreter).

 Error details are stored in a diagnostic file.

 Converts and executes a high level program

into machine code one line at a time.

 As soon as it hits a problem, the error is

immediately reported to the user and

further execution of the program is halted.

 Converts a low level assembly

language into machine code.

Benefit:

 creates more efficient code than

interpreters so compiled programs run

faster.

Drawback:

 displaying multiple errors at the same time

means compilers tend to be more difficult

to use.

Benefit:

 easier to use as errors are reported and

corrected one at a time, not all at once.

Drawback:

 slower than a compiler because looped code

can take a long time to get through one line

at a time.

 instructions use English so easier to

read/write than a low-level language

 easier to maintain code

 leads to fewer errors

 simple commands perform complex tasks,

such as sort() in Python.

